Integration of Informal . Formal Me 1cds or the everse

Fuginearing of O rograms’

[

Gerald C. Ganao

ind et v HLC. Cheng?

Departn

it of Computer Science
Michipare State University
Fast 1. sing, Michipan 48824
tel: (517) 158 8347 fax: (517) 432-106]
{ganncd, “hent}ocps . wsu . edy

Abdtract

Reverse engineering of program code 1< (i jrocess of constructing a higher level abstraction of an
unplementation in order to Sacilitate 1) viddertonding of a systen: that may be in a “legacy” or
“geriatric” stale. Changing architectvies and enprovernents i progromming methods, including
forinal methods . software developrient ¢l oljcct-oriented programning, have prompted a need
to reverse engincer and re-enginecr propa coa This paper deseribes the an integrated approach
that mucorporates the use of scini-formal an ilysic end forial program scinantics to reverse engineer
C programs.

1 Introduction

Software maintenance has long been a prchlem faced by software professionals, where aver-

age age of software is between 10 o 15 yeors olc 1] With the developinent of new architectures

and improvements in programming methods anc languages, ncluding formal methods in software

developent and object-oriented propremiai here is o strong mot vation to reverse engineer

and re-engineer existing program code in onles to treserve functionah y, while exploiting the latest

technology. Formal methods in sof

Te crient provide many benefits in the forward en-

gineering aspect of software developimer ‘0O of the advantages of using, formal methods in

*This work is supported in part by the Nation |
CDA 9312389 and NASA Grant NG1-70376
"This author is supported in part by a NA~
Please address all conespondences to (}

roe Foundation grants CCR-9407318, CCR-9209873, and

Student Rescarchers Program Yellowship

software development is that the formal notton are precise, verifiable, and facilitate automated
processing, {3]. Reverse Ingineering is the poco e of constructing, high level representations from
lower level instantiations of an existing systen Gac method for intrtoducing formal methods, and
therelore taking advantage of the benefits of Gz methods, is thiough the reverse engineering of
existing program code into formal specifictione [4 5, 6).

This paper suggests an approach for inteps ating the use of inforinal methods, such as structured
analysis, with formal techniques in ordes to 1evers cnginecs mnperative prograins written in the
C programming language. The formal appro: b is based on the formal semeutics of the strongest
postcondition predicate transformer sp |7], and the irtia) correctuess model of program semantics
introduced by Hoare [8]. The objective oft)isintsy rated spproach is to take advantage of the
benefits of graphical notations while proviciing w11 orous underlying formalism. The integrated
approach is applied to actual source code teben (romanexisting, NASA application involving
unm anned flight syste ms. Previously, ve imvestipated the use of the weakest precondition predicate
transformer wp as the underlying formal modelforcastiveting formal specifications from program
code [4,9]. More recently, we desciibed the use oo sp as @ formalbasisto reverse engineering
programs written in Dijkstra’s guarded command larpoage {10, 11].

The remainder of this paper is organized s~ follow Section 2 provides backgrouvnd material for
software maintenance and forma methods.'th. © enovtics of the Cprogramming language using
the strongest postcondition predicate transformeris describedin Section 3. The issues related to
integrating informal and formal mnethods for1ever v ngineering are discussed in Section 4, and
this approach is applicd to @ NASA ground hiss <t sy o for controlling, unmanned spacecraft in
Section 5. Related work is described in Scction 6.) e 'y, 56 tion 7 draws conclusions, and suggests

futu reinvestigations.

h LAY

02/13/790 1UL 14:D58 IFAX D17 437 100L]) MSU- COMPUTER SCIENCE W UUa

2 Background

This section provides background inforn o for software maintenance and formal methods for

software development. Included in this Cisouseion is the formal wodel of program semantics used

throughont the paper.

2.1 Software Maintenance

Figure 1 contains a graphical depiction ol a process model {or teverse and re-engineering [12,
13]. The process model appears in the fo nc of two sectioned tiiangles, where each section in the
triangles represents a diflerent level of «bs ettt 1. The bigher levels in the model are concepls and
requiremnents. The lower levels indude de agie and traplementations. The relative size of cach of
the sections is intended to represent the @ nown' of information known about a systemn at a given
level of abstraction. Entry into this 1e-crgmeciing process model begins with system A, where
Abstraction (or 1everse enginecring) is per onned to an appropriate level of detail. The next step
is Alieration, where the system is constitu ¢ irto a new form at a difterent level of abstraction).

Finally, Refinernent of the new form into w1 hnpl mentation can be perfonined to create system B.

Al ation
. .- ;..

/ Cry g

Ko o aeats

"‘Reverse Engincering®” Foswan Frginceding

Abstraction Fefincment

X it

Ty e eon

Systen A Sysienm B

Figure 1: Reverse Fagh ecring, Process Model

This paper describes an approach to1ever-e cupmeering, that is applicable tothe trnplementation

and design levels. In Figure 1, the conteat for this paper is represented by the dashed arrow.

k. 44 e e dada wld dOL AUUL MOU- GUME UL I Db d avtd

That is, we address the construction of ormal low-level or “es-built” design specifications. The
motivation for operating, in such an hploment tion-bouvnd level of abstiaction is that it provides
a means of traceability between the progron sorce code and the formal specifications constructed
using the techuiques described in this pepes. Uhis traceability is necessary in order to facilitate
technology transfer of formal methods. It at is, currently existing development teams must be able

to understand the relationship between the conice code wnd the specifications.

2.2 Formal Methods

Although thewaterfall development hic (viepr widesastiuctwed process for developing software,
the design methodologies that support the feeyie (e, Structured Aiiaslysis and Design [14]) make
use of informal techniques, thus iucreacing the potentizl for intioducing ambiguity, inconsistency,
and incompletencss in designs and inplernentatons. Incontrast, formalmethods used in software
development ave rigorous techniques forspocifyite, developing,and verifying computer software [2].
A formalmethod consists of a well defined:prificationJanguape with a set of well-defined inference
rules that canbe used to reason about: sy cificetion[?2). Abenefitof formal methods is that their

notations arc well-defined andthus,zreanenatr to automated processing, [3].

2.2.1 Program Semantics

Thenotation Q { .$'} 18] isused torepre.cntiy artial correctnessnode) of execution, where, given
thata logical condition Q holds, if the excortion HlprogramS terminates, then logical condition R
will hold. A 1earrangement of the biace-tiprocuce { Q} S{ K }, incontiast, represents a total
correctness model of execution. That i if cond tion Q holds, then § is guaranteed to terminate
with condition £ tiue. The context for our 1 vestizstions is thet we are 1everse enginecring systeins
that have desirable properties or function ality the® should be preserved or extended. Therefore, the
partial cori ectness model is suflicient for theae porposes since the termination properties of these

systetisareknown a priori.

*

Wil Vv o

| 02/13/96 TUE 17:54 FAX 517 432 106) MSU- COMPUTER SCIENCE

2.2.2 Strongest Post condition

The strongest postcondition sp (S, (0) pred atetensformer [7]is defined as the set of all states in
which there exists a computation of Sthictt picwith@Qtrue. 2ist is, given that Q hold s, execution
of Stesults in sp(S, Q) true, if S tenmatos A such, $p(S, Q) assumnes pat tial correctness. The
weakest precondition predicate tignshon e op(S, R) is defined asthesct of all states in which
the statement S can begin execution and tenmate with postecondition It true. Given a Hoare
triple Q@ { S} I, we notethat wpica® kv ard”rule, in that a derivation of a specification
bepins with 12, and produces apredicate o g S0 The predicate transformer wp assumes a total
correctness model of computation, meaningthatgiven & aud R, if the comput ation of S begins in
state wp(S, 1), the program S unll hsltvihcorition /2 true.

We contrast this model with the o, 1 odel 4 “ forward” derivation rule. That 1S, given a
precondition Q and a program .S, sp deiives a0 edicate sp(S, Q). The predicate transformer sp
assu mes a partial correctness model of computstion meaning thatif a program starts in state
@, then the execution of S will place the jrogiam in state sp(S,Q) iIf S terminates. Figure 2
gives a graphical depiction of the dificience. hetveen sp and wp, where e input to the predicate
transformer produces the corresponding prodica e Figure 2(@) pives the case where the input, to
the predicate transformeris “S” and “I° | o d thc output to the predicate transformer (given by the
box and appropriately nained “wp’) i« © wp({& R} The sp case (Figure 2(b)) is similar, where the

input tothe predicate transformeris “Sarid (3, and the output to the transformer is “sp(§,Q)”.

{Q) s (K (Q) S (R)
yd N
/]
T o } > Sp(S.Q)

wp(§,R) e wp

) W)

Figure 2: Black box represcutation aid diierences between wp and spr (a) wp (b) sp

@005

Vet Lt o

[V PR IR I ISRV VA A4 VAUV Y B | tu L PR s -~

gy - * .

I'he use of these predicate transloinois for 1everse enginecting have different mplications.
Using. wp implics that a postcondition s2 o known. However, with respect to reverse engineering,
determining I is the objective, theredore vy only be used as a guideline for performing reverse

‘ . S T . - « oy N
engineering. The use of spassuines that o precondition (Q 1s known and that a postcondition will be

derived through the direct application of wp Tt erefore, spis mote applicable to reverse enginecring,

and iS used as such in this project

3 Semantics of C Programns

Quiprevious investigations [10, 1 1]iny ol od Ul ase of he strongest postcondition predicate trans-
former as applied to the Dijkstra puard. d conaoand snguage [10). This section defines the sp
semantics of the C programming languapc [16]. Due to space constiaints, ouly a subset of program-

wing language vsed in the application cxample is presented. A more complete description of the

semantics Of the C programming anguapc 1.0y bhe found in (7).

3.1 Assignment

Let u be a variable or an assigna ile exprocion end ¢ be an expression. An assignment in the C
programming language has the form v 2 ¢ w b ere £ is atvassipnment operator (i.e., = 4= 4=),
There are two 1oles that an assignient sta ¢ et canhave. Thefiististhe traditional assignment,
of avatiable withthe value of ancexpressor 1l second 1ole is as a side-effec t boolean expression.

In order to cope with the dval 1ole of i 11 assigmnent statenient, two functions are defined.
First, in order to describe the semantics of 1 he G, ditional use of assignment, an evaluation function
A: S -) 7 is defiued, where S is thesetof eyn actically valid assignment expressions, and 77 is
the type of the result given by eveluating the oipression e, For instance, given an assign ment
statement ‘(x *= n* , the function 4 would b coaluated a5 A(x 4+ n) = x # n. Table 1 defines

the semantics of the function A on & fey ¢ =t a cignmcutoperators. A more general form of the

function A, can be defined as as A(b), . 1 eeSisthesetof valid expressionsin C., and b is an

UL/ l1la/sav 48 e 2 §F » AW 4 484 VA 2 . 7 7T

FOReat a0 | Bealuation
j o A

s ¢

i] P A §
(A :

l 1 v

F v- e

i % “vmod ¢

Table 1: Bvaluation of 4 ¢ select (assignment operators

expression. This form is used in the coe vlien the parameter to A is not an assignment expression.
The interpretation is that the evaulation op v expression (thatis not an assignment expression)
takes the value of the expression. Duc tn wpace constraints, we focus primarily on the assignment
expressions. Using the definition of A, we con cefine the strongest postcondition of an assigninent

in the following manner:

spx e, Q) (e QpAav Ax T e)) (1)

where Q is the precondition, v is the quar titicd vatiable, and 3 irdicates that the range of the
quantified variable v is not relevant in the wrert context. This specification states that after the
execution of an assignment statement, ther exis < some value vsuch that the textual substitution
of every frce occurrence of z with vin ¢ Lecps () tioe, and # takes the value of the evaluation A on
x = o). This means that after the exccution of @1 assignment statement, the precondition Q must
still be true with respect to the value thit Uie vaoiable x had before the assiguinent, and that the
assigimment must be valid,

The second function that is used to defi ¢ the effects of an assignment statement is the logreal
valuation function V + S -3 B, where I8 1t e Boodean type. The purpore of 3 is best motivated
by an example. Consider the sequence of vale Fipure 3. Informally, the semantics of this

code sequence is that if the guard is t1ue, excute 1, otherwise execute 82, However, the guard is

peculiar due to the fact that the expressio b no a logice! one, but at heranassignnent expression.
Fhe semantics in this case are dependent on the side eflec t of executing the statement v = e. Using
the function A, function V is defined so

1 AW e)¥ 0
])(z) S)7/ ,

Jit Afp 0 0

where 7" and 1" are Boolean constants tu- end false, tespectively. i gencral, for some arbitrary

expression b, V is defined as:
ol A S0
V(b) { "

\

Although the side effects of an assignmeat = ateinent have no eficet on the assignment itself, the
side eflects do impact other operations as v aw shown in t he shor t example above. In Section 3.2,

the use of V will beimportant for defining the sonintics of alter nation statements with side-effects.

it v e) |
&1
boelse
“v

Figure 3: An Assipinent statement as a guard

In this paper, discussion has beenlimitydo s siiall subset of the available assignment operators.
The semantics of the shift and bitwise assip nentoperators can also be defined using the functions

A and V.Inaddition, the semantics of vtheres presions can be defined vsing these functions [7?].

3.2 Alternation

The alternation statement for C programs car take two forns:

ULr d BeN L L4l0ob PFAA ol 44< 1VL MOU- VUMD O LILVIV I TR eds

it B { i B {
s s,

} } else
-

DY

We refer to these statements as C- 111 avd € V2, 1espectively
When the puard of an alternation <tateinen! has no side effects, the sarnantics of the alternation

statement isas follows:

sp(C=1F¥5.Q) = «p(t BAQ)V sp(skip. - BAQ)
S BAQYN (FBAQ)

sp(C-1F2,0) . «p{S BAQ)V sp(Sy,- BAQ)

If the restriction of havingalternation t. tenntswithout side- eflects in the guards is removed,
then the semantics of the alternation statynienthave a different nieaning. Informally, if there is a
side-effect in the guard B, then the exe:uvtonof analternation is analogousto “executing” B, then
running the alternation using the evalvationof b Moire formally, let Bbe a guard of an alternation
statement (C-1F1 for instance) suchehettle (valuation of B causes a side-effect, and let V(B)
represent, the truth value of B. Ixccutionof thraternation stateent is equivalent to the execution

of the following:

B; B;
if V(B) { it V() {
s S
} } else
Sy

We refer to the alternation statements (the :f = atement with the 1eplacement of B by V(13)) as

C-1F1, and C-1F2,, respectively. The seinantics of C=IF, a1e as follows:

sp(C-1F1,,Q)

e

sp(C- VL splb ()
=SV (0 0 (5,Q) Y CVE) Asp(8,Q)

sp(C-1F2,,Q) = sp(C-y2 sk 1))
S V) g (5.Q)) Y p(Sp V() A sp(B. Q)

3.3 Sequence

Sequences of statements in the C progian e languane have the form Sy ;.. .;S,,. The appropriate

semantics using sp is as follows:

sp{S. 50000 sp(Se op(S), Q). (2)

Since the impact of side-eflects are spee lid Ly the corresponding, sp formalisms for assigument,

alternation, and iteration, this characiciization of the semantics of sequence is sufficient.

3.4 Iteration

in the C programming language, the iter: Gon coastruct can take one of the following forms:

while (B) { do { for (ezprl;crpr2;eapr8) {
S5 S, S;
} }owhide (i) }

where B is the guard expression and ¢opori ot foo iteration expressions. This Section describes the
strongest postecondition semantics for the v jleiteration construct of the C programming language.
For the do-while and for constructs, approptic te transformations vsing the while semantics are

provided.

3.5 while
When no side effects are present, ti e whi) citvrationconst ructhas the following serantics:

sp(while, Q) -t Cli 0 <i:sp(C-1K1, Q). 3

Equation 3 states that if the execution of the vhiie statement terminates then the guard B is false

and the result of applying the rule sp(C 111 Q) « vimes is true. Notationally, sp(C-TE1Y,Q), where

LUMLE UG DU oLt
; PRV

PO VR B IR VY] LA Jat 0 duvul JURS AW

i 1s the number of iterations, means that «pic recursively applicd to the result of sp(C-TF1,Q). Vot

instance, sp(C- 1F1%, Q) has the (ollowine deriv 1 jon:

sp(C-1F130)) e G L, spl G- 1K1, Q)
v GBI spl G- TR, sp(C- 1K1 ,Q))).
In the case when the guard of the while stitement has aside eftec , the semantics are similar
to exccuting, the following:
4N

vhi de (V(B))

«
Sy

I
}
where V is the valuation functiondeacibdimSection 31, The corresponding sp semantics of the

while statement with side-eflects (denoted vhite,) is

sp(while,, Q) - - V(b) A (3100 < i:sp(C-1F1", sp(B, Q))). (4)
where the body of the statement ¢-1Fjconistof “S; B,

3.6 do while

The semantics of the do while statenent o f, stnilar to the whilestat einent, where the guarding

condition appears after the loop body. Us g thewhi 1 e construcet, do while can be written as the

following:
S
It
white (V(B)) A

’

The cortesponding formal specification of the wwmantics of the do while statement is given by
Iiquation b

sp(whiley, sp(S,Q)) - VB £ (100 <1 sp(C-1F1Y, sp(B, sp(8,Q)))). (5)

ARV

W/ 1790 JUs Lt L0 I'A A VLT o< 1vu TR v s

where the body of the statement C- JF1 canei 1+ of ©3; B, This specification states that after the
execution of a do while statement, the valiation of B is false, aud the body of the loop is executed

1 times, where the initial precondition to the bopas given by sp(B, sp(S§, Q).

3.7 for

Recall that the for construct in ¢ hee the formn

for (eapilerprl;eaprd) {

S5

The scma ntics of the for iteration statcn entis that the first exp ression (ezpr1) is executed (evalu-

ated) once, the second expression (e2pr2) i cvalvated before cach iteration, and the third expression
(ezpr8) is evaluated after eachiteration. 'J'hesosemantics, using the while construct, are repre-

sented by the following:

cipel;

cip 2,

wvhilte (Vi(eapr2)) {
hEIN
caprd
w.”,"h?

}

The tesulting formal specification of the stmsntics of for using the sp for while is

sp(while,, splezprl, Q) = - V{cpi2p 1 (3100 < it sp(C-181, spleapre, Q))). (6)

where the body of the statement C- 1F3 can-ists of “S; capr & eapr2;”. This specification states that

after the execution of the for loop the lozical valuation of eaprg is false, and the loop body is

executed 7 times where the initial precondition to the loop is given by sp(ezpre, Q).

3.8 KFunction Calls

Functions in the C programming langusge ¢ se: vee two basic purposes. A {unction can be a pure

value function, where the purpose is to conpite sc e value based on the parameters. Alternatively,

a function can be a procedure, where the g pose s to perfonin @ number of encapsulated tasks.
Our previous investigations (10, 11] de v1ib: an approach for defining, the semantics of functions
that scrve a procedural role. Due to spoov conatraines, this discussion is not repeated here.

Lable 2 contains a taxonomy of lyaction. based on the propettics of variables, side-effects,

values returncd, and parameters The rioh s property describes the kinds of variables that are

FunetionCloss
Property Jracedursl Pure Valued
variables g obal, locs | local
side-effects yee. no
parameters Pva e N T e-resylt, Tesult value
valuesret utned multiple sinple

4 . . 2} "yt . N -
] ‘able 2: A Taxonony o Programming Languape Functions

used by afunction. The side-cficcts piojyorty - used to indicate whether the class of functions
produces side-cfkts. The types of paramneters aund thenumberof values that are returned by a
function are described by the parumeter e vd ve lues retur ned propertics, sespectivel y. Pure Valued
functions are characterized by the faz t thi t the variebles used are local, the functions produce no
side-cflects, the parameters ate value parar . eirrsandt he functions vet urn a single value, Note that
a procedural function can eflectively servet el ale of apure valued function if it can be ensured
that the functions produce uo side ¢flecte. thisinplies that the number of Vaues must be singular.
in this context, we assume that themodifcatio of avalue result parameter or result parameter
produces aside- cficct.

A function in the C programming langugr b . asiguature (o1 prototype) of the form & f (D)
where R is thereturntype, and Disthe tup vt tvpe of function f] o1 example, a function max
could have a signature “int max(int, iutt; +iiven s variable “x” of type 12, a parameter “a”
of type D, and an assignment operator a1t the fundtion f has the form “x & f (a)”.

Let f be a puie valued function. J'he efiect of ¢ aling the function is that a value is returned

A A N

A F s R4 £ F 4R ALY RRMAE S

and assigned to the variable x. The core ponding, sp semantics for the function call is

sp(x 1 (a), Q1 {n QL Az Al 1 (al)). (7)

This specification states that after the € <o ution of an assignment statement using a function call,
there exists some value vsuch that the rextue! substitution of every {yee occurrence of # with v in
Q keeps @ true, and 2 takes the value of the evaluation A on x o f(al). Note that in the case

where a pure valued function is called but not essigned that sp(5 (2),Q) = Q.

4 Integrated Approach

Due to the mathematical nat ure Of forn i <pe jfication languages, for mal methods have been de-
scribed as time consuming and tediovs. 1 fowever,since thelanguasges a1ie well-defilled, formal
methods have been found to be amcunst e (o ¢ utomated processing. Semi formal methods are
techniques for specifying syste lll 1equitcuiertsind design using hierarchical decomposition. M ost
semi-for 1Is] m ethods have the property thst 1}, notations are ("graphical, facilitating ease of use in
theiy application. The drawback of seinitor ol methods is that the notations are imprecise and
ambiguous. This section describes anapyicachto reverse enginecring that integrates the usc of
semi- formal inethods and formalwethods mord erto utilize the complementary advantages of the

notations.

4.1 Structured Analysis

Although therecent trend in software devel pie thas been to b uild systeras using object-oriented
technology, a majority of existing systems hove boen developed using, imperative programming lan-
guages, such as C, FORTRAN, and COBOL ./ he procedutal structure of these languages makes them
amenable to the techniques offered by the Stvetvied Anolysis and Disign Technigue (SADT) [14].
I SADT, the focal point is the procoduie o function. The analysis stage centers around high-level

descriptions of the functionality of the systen . Tiering the design phase, the 1efinement and de-

14

co mposition of thehig h-level desciiption of functions yiclds more detailed descriptions of functions
and procedures that incorporate implene ntate adetails. Finally, duting th ¢ implementation phase,
functions and procedures identified ¢ 1-ing, design ate decomposed into more specific functions.
When using SADT far reverse enpin tong activities, the structure of an implementation is ab-
stractedinto l]i~}-level graphical desoip ons unctions known as call graphs or structure charts.
These graphs depict the calling hics @by of functions within a syste m. IFurther analysis of source
involves analyzing the data that flows tcs{toan variovs functions by constructing data flow dia-
grams. Our approach is to constiuctvaions praphical desceriptions of a program, in most cases
automa tically, and then use those desai;tions 10 guide the constroction of formal specifications

from the diflerent parts identified by the 7aphi al descriptions.

4.2 Applying formal techniques

the purpose of integrating the use of foynatmcthods and semi-forinal methods is two-fold. First,
it is desirable to take advantage of the benfits o the complementary techniques. Second, by using
a semi-formal technique to guide the forma techoique, orpanization of the foral specifications will
bebased onthe structure of apimplenic1,1,,11011 As such, in the case wher e formal specifications
are wart anled, the specifications can be arecly associated with s praphical entity, while those
parts of amodule that do not requireripor - deseriptions can be left wnspecified (formally), with
the descriptions of the.se modules being lefita (3 semi-for malisms.

There are three guidelines that avefollowd when formally specifying a module, That is, the
process of formally specifving a module con-its ,, f thiec steps OF phases:

1. Local Analysis
2. Use Analysis

3. Global Analysis

During the local analysis phase, the allivphicsrchy olamodule is constructed and a skeletal
formal specification is built, with the sp prchran s left es parameterized transforins, that is, the

transformations for sp are unevaluated. The objecnive is to pain a high-level understanding of the

th

vo LU JO.UU I'AA it 43 Lvoid OO LUMEP LTI D 2t

logical complexity of the given code. The second step, use analysis, is a recursive step where the
three phases are applied to the fouctions end nocedures wsed by the original module. This phase
is characterized by the fact that the sementics of the vsed functions and procedures are determined
before they arce used by the original modue ¢ Bovever, in many cases, where the semantics are either
well-defined or the semantics are not ¢ty 8!, a1 unevsluated sp predicate can be used. For example,
given a statement S and a precondition (O woere the semantics of S are well-defined, instead of
evaluating the transformation, we vse s:(5, (1 to represent the logical expressiou describing the
semantics. In the global analysis phace, the vie analyas information is combined with the local
analysis information to obtain a global & soiption of the original module, The global description,
an expanded formn of the skeleton forml ¢ pecift «tion constiucted duning, the first phase, elaborates
upon the semantics of a module by integiating tw specifications constiucted during the use analysis
into the skeleton. This activity corresponds to 1emoving the encapsulation provided by a procedure
or function call.

Formal methods have been found to Lo aninable to automated processing. In addition, many
techniques for abstracting semi-forinal gii phics specifications froi code have been suggested [17).
In order to support our approach, we have been developing, a system called AutToSpec. Currently,
AUuTOSPEC supports the constyuction of graph al specifications from C programs and is being ex-
tended to support the construction of formal sp difications using the three step approach described

above.

5 An Example

In this scction we demonstrate t he vse o 11nteprated approach to modules from a nission

control groulld-based system at the NASA Jet "I()pu]sion Lub()lal()r_\’. T'he purpose of the code is

to translate usercommands into spaceaafimnemanics.

i 0 BRI

5.1 Local Analysis

Figu re 4 gives the code for the trenslet proce dure. Arrinitialsemiforinal analysis of the trans.
late code yields a calling graph as dejuc ted in Fipure 5, w here the rectangles indicate func-
tions , and the labels correspond to thie funcr ion names piven by the index to the right of the
graph.From this initial analysis, weline thatthetranslstofunction uses five functions includ-
ing initializo interpreter, proccus binary. output, informuser, process mnemonic_input,
end. .cmdx1lt,and process .cavg. '} he trenstate function has{four diflerent modes: initialize,
tra nslate, control argument. assiginnent, . wicior. For this analysis, we assume that we ave only
interested in the translate function in (1 I trer clate mmode. Thus, we are ignoring the initializa-
tion, control argminent, and default niodes il is analvsis whidicor respond to the 1 NIT, CARG,

and default cases of the switchslal‘c-u‘e-ltl

Therelore, we are left with specifying the while
statement depicted in Figure 6, where lib. 's i ve beerradded for (onvenience in the following
discussion, Informally, the trans) ate fun Commthe itanslat e modelisresponsible for building a.
list of spacecraft instructions corrcsponding tomterpicted commands by caling a function called
process._binary.output.

Aun analysis of the codein Figuie Gusing; 1hesprulefoithewhil estatement yields the following
specification:

~(args{0) o0y /0 (i 0 0 < osp(80Y, Q)), (8)

where the e xpression (args{0]t= <()') ha , 10 cude eflecte, aa Qs the precondition to the state-
ment SO. This specification statet thatatic; the while statenienthas been executed, the args
array has a ‘O’ asthe first entry, wwd the <0 at enentS0hasbeenexecuted some nuber of itera-
tions. Unfortulately, the specification in (8 + i not very informative outside of identifying that the
programn uses an ilerative construct. As sucn, an expansion of sp{80, Q) is warranted.

Usiug the labels shown in Figure 6, « spedificc tion of sp(S0,Q) is given by

' Although in the context Of thiS papetwchavarmtd fime | the sercantics of the swit ¢ hstatement, our investigations
have included the consty ucl.

Ugrslas/vo IUry 10Ul I'AA DI 44<

struct msg
{
oxtern
static
struct

switch
{

cas

cas

cas

def

return(

fvoui

MSU- CUMPUL K DUCHENLE

#transdate (int op, char #args)

int dontovtput
strvcl project parametiers $pp;
msg *pp o NULL
(op)
e INIT: /¢ initialize the interpreter +/
pPp = initieiree anterpreter ();
break;
e X17: /1 inteipret a mossage */
wlnle argsl0] = *\O?)
{
if (precese_ruemonic input(&args, pp))
if (wp : - NULL)
np o+ yrecess_binary_ovtput(pp);
€] e
{
np- >next = process binary output(pp);
pp s e >next;
}
1
else
dontovtpys = 1;
}
break;
e CARG: /+set a value for acontrol argument @
process caiglbargs, pp);
beak;
ault:

inforn, use: (Minternal error: bad op in translate");
end_cnd>itiCMh LRROR);

mp)

Figuire 4: Tran late Source Code

/

Wwvio

A TOREVIC RN S ORI M7 AN AN R R

Plovie S Translete

sp(SO0.Q) V(B A sp(13,Q)) V (9)
cp(S2 VY A sp(B,Q))
where I3 1= process mnemonic_input (§s1gs,pp). This specification states that after executing

the statement SO, it will be true that cither S1 vas executed or S2 was executed, where the seman-
tics are determined by the preconditions V(3 Ax p(B,Q) and - V(B Asp(13,Q), respectively. So, in
this case, either the 11 statement (S1) wes execuied or the assignment statement (S2) was executed.
The specification makes explicit that the precondition sp(process mnemonic.input (¥args,pp), Q)
to the statement 80 may contain a side cfiect. ote that if the function process mnemonic_input

has no side effect that

sp(process mnencnic input(&args,pp), Q) - Q.

v

Further expansion of sp(S1,V(I3) A sp(13,003), end sp(S2,--V(B) A sp(B3,Q)) yield

sp(S1, V(B) Asp(B,Q)) - «p(S1a, (mp= NULLYAV(B) A sp(B,Q)) v (10)
S, (/. NULL) AV(E) A sp(B, Q).

and

UL/ 1a/790 o 10.ud I'dA ot 4 494 JuLi MoU-cudt ol sl r. Ry vev

while (er¢s{0) I= 7\0Q’)

(3tocesr nancenic_JInput (sa1gs,1p))

if (rp o»= NULIL)

’ ny = process binary output (pp))s

e} g

{
no->rext = process_binary output (pp);
B o» M- >dniext ;

dootoat)pot o3,

Fipore ¢ Translate Source Code

sp(S2,-V(B) Asp(B,Q)) -+ ep{Bantoutput = 1,-V(B) A sp(13,Q)) (1)
dontoutput = 1) A (SV(B) A sp(B, Q))dentoutput
respectively, where u is the value of sontoutp. itbeforeexecuting S2. Equation (11) states that
given that the expression ‘V(B) A sp(23,(2)71 true, either S1a has been executed or S1b has
been executed, ecach depending on the « dded ¢ ondition that cither (mp = NULL), or (mp #
NULL), respectively. On the ot heihane, Bqustion (] 2) states that given that the expression
“SV(B) A sp(B,Q) s true, execution of SP1esu'ts in the assignment of the variable ‘dontoutput’
to be ‘I'.
The preliminary skeleton of the Jogicals poifi ation of the translationmiodule canbe constructed

by substituting the Bquations (11) and ¢ 1) backintotheoriginalliquation (10) such that

sp(S0,Q) = sp(Sla, (ups NULL) AV(B) Asp(B,Q)) v (12)
sp(SIhy - up s NULLY AV(BY A sp(B,Q)) Vv
(dordoctpat = D) A V(B) A s;:(]#,Q))‘i"“"’”"’”‘

which states that in every iteration, one of tiec zetions is executed, namely one of Sia, Sib, or

PR VR MoU LU LH VIV O S L INT

S2

At this point In the analysis, sinc ¢ S)sand S1barestatenentsthat depend on the specification
of functions arid proceduresthatare wue by 1 1anslate, ic is appropriateto begin a use analysis
for the transl ate function , where in thi case, the function pyocess. binar y output iS analyzed.

In summary, during the local analysi plia cfortrans)ate a graphical representation of the
function was cicated with the intention ot drtennining the calling, hierarchy for the function. Next,
a logical analysis was perfor meduvsing, tap down approac n that uses encapsulation with th e

intention of determining the logical comple ity

5.2 Use Analysis

Use analysis involves the specification of farcticns thatare veed by a piven object of study. In our
example, given that the object Of studyis the trenslate function, uscanalysisinvolves specifying
the functions used by translate. Inthiss ctiorwe desctibe the function process -binary_output.

Figure 7 contains the source code foryrocens binary.output. Theuse analysis for this func-
tion involves three steps, eachcorresponding, o tne steps followed for trans) ato. That is, wc
petfor m local, UscC, and global analyscsongroce s.binary. output.. Theremainder of the process
of analyzing process .binar y_outj ut i~ & niley o the process used to analyze translate. How-
ever, intheinterest of simplifying theanelysiswe shall ignoremany of the details involved with
analyzing process _binar y_outputaud fon- primarily the output characteristics. Note that the
strict application of the rules for sp1cquite a e by lineconstiuction of o specification. Here,
we informally construct the specification it i t ne understanding, that al of the information can
and shiould be constructed rigorously. ()11 jyaobjectivein this example analysis is to provide
enough information shout, processbin: youtyat to be able to describe translate in a sufficient
manner.

Cousider the code of Figure 7 for procers b j nary.output. Therecare three statements that
determine whether o1 not the outputof thefoncion is defined ornot. These are indicated by the

line numbers 1, 3, and K, respectively. L ¢ 7, for instance, has theinterpretationthat if space

(VA Y v LR AT Y B N S e N B

struct msg Pprocess borary output (struct project_parameters tpp)
{
oxtorn UWiG *:trm ontry;
Ul6 code;
U16 *cp;
sStruct mug 1 p

Q= controd list,
Ve (U16 9dstack tase;
S = (UZ2 *)non &

mp :451,U(Lp$£ sralloc (sizeof(struct msg) + MAX_MSG_BYTES);
l: if (mp = wur)
{ varn{"ys ¢ css | inary. output: ovt of memory (mallocfailed)\n");
end_cmidxls (1),
}
PUSHL.(np- >t g bots 1 /* ~fforlength field, written over later */

ep = pel_entry (pet U32 QQ));
P =ep+ 1,
do
{
code = wbad
i1 ((cede < 1) i1 (code > 32))
{
war (' bad cnde™);
end_ crh1t(oy);
}
(*ovtput 1irfecded)();
} while (<ode 1= REPHG);
mp->neat = NULl;
np->msg_len ¢ A (np vrsg bits - 1)
J: if (mp->asg len > ppd>mey_meg_bits)
{
fai1(T0D, MANY_BITS, NULL, NULL);
free(np),
retur n{KUL D)

}
mp=>msg hum o4
copy_space fil.ed("', mp >start, sirzeof (np->start));
copy. spacc {illed (", mp->open, sizeof (np->open));
copy_space 11l e, mp->close, sizeof (np >close));
copy_spacc_11]7&((gtl4stem,and“tit]c(stem_cntxy), mp~>comment,
sizeof (mp- >conment.));
mp->chksum = chkeon(up-Swsg_ bits, YLD-LFN_UF(mp~>msg-len)‘2);
K: return(ry);

Figure'j: I'roces B uary Output Sovrce

could not be allocated for theictuinobj. 1, thie routine abor ts, whileline J forces the routine to
return a NULL object duetosome other erio: Pinally,thelineKindicatesa successful return of an

object. Therefore, we can construct thefoile ing specification for py ocess_binar y_output:

sp{warn; end_cmdzll, (mp = NUJT) Q) v
sp(fail; free; return(NULL), (p->us i, | eus pp - >max.msg. bits) A (1pyf NULL) A Q)) Vv
sp(return(mnp), (mp->msg.1 on < pp->mex ns &;bits) A (mp o NULL) A Q)

(13)
which states that after executing p1c:e:t binary output either varn and end_cmdxlt were exe-
cuted, the routine returned a NUL.10bie t ortle routine tetutned a valid object. Again, WC str ess
that this specification is incomplete andonly pecifies a smallslice of the functionality of the rou -

tine.Since this routine (along with 1 ra 1 stat .) are taken out of context, a full specification makes

no contribution to this example.

5.3 Global Analysis

The final step inthe analysisis to teke the s pe ification of Equation (1 3) arid integrate it back into

the skeleton specification of Equation{1:) Ji-specification is as follows

sp(S0, Q) = ((rep = NULL)N (mp)}V (14)
(((mp->neat: NULL OV (npr Sneat = u)) A (np = wp=>nezt)) V
(dontoutput :3) N\ (- V(B) N\ sp(B, Q))denrovtrut
whine u isSOINC new object. Thisspeiifiation statesthatalterexecuting (S0, the variable mp has
either thevalue NULL or pointstosomeew ¢hject, otnp- >nexthasthie value NULL or points to
sorne new object with mp pointing toup->neyt IFinally, if neither of { hose cases holds, it must be
that dontoutput™ 1. In the contextol lv gpification of Iiquation (8), this specification means
that after each iteration, a chain of 1 ¢r avee 1 constincted or the dontoutput t1ag is set to 1 .
Note that in this specific.ation wemake tie ass 1aptiont hatt he pointer assig nment behaves like a
variable assignment. in this case theien non actof making this assumption. However, there arc

semantics that arerelated specifically topoyne. . [?].

X

6 Related Work

Previously, for mal approaches to 1everse enpinecring have used the seimantics of the weakest precon -
dition predicate transformer wp a< the v n e lying formatism of then technique. The Maintainer’s
Assistant uses aknowledge-based transfennatiorat approachio constina formal specifications from
program code viathe usc of a Wide Spectrine 1 anpoage (W'S],) [6]. A WSL is a language that
uses both specific ation and impetative jangaape constructs. A kunowledge base ma nages the cor-
rectness preserving transformations of cor crete implementationconstructs ina WSI to abstract
specification constructs in the samc WS,

REDO [5] (Restructuring, Maintenzue: , Vallation an d Document ation of Softwa re Systems) is
an Bspirit 11 project whose objectiveis to mnprovcapplicetions by making thein more maintainable
thiough the use of reverse enginecring tect nige + The approachused tore\ 'ersecrlg,irleerC 0110,
involves the development of general guidelines forthe process of deriving objects and specifications
fromprogran code as well as providing « 1sineworkfor formally reasoning, about objects [18].

The “I.oop ANalysis Tool for Recogniring, Noturalconcepts” orl, ANTRN is an approach that
uses a multi-step Process to constructp: ccicate logic annotations. for loops. The analysis pro-
cess involves the translation and normaliy stion of loop programs into forms that are amenable to
matching of various componentsof loops Abyowledge base or planlibrary is used to identify
stereoty pical loop events, whiere events come in the form of basic cvents and augmentation events.

The approact taken by the LANTRN tytter moves inthe direction of making other plan-based
approaches more formalin that, the final gy ¢ of theloop analysis activity is the construction
of aformal specification. The shortcomings ofthis approachare that tiL(:usc ofakllo\v]edge-base
requires constant updates to handlencweces meaning that the size of the knowledge-base can
become unmanageable. in addition, while the @ tivity produces a formal specification, there is no
formal basis for the verification t} et the preifiztion of the plan matches the true semantics of a
loap.

[n the REDO and Maintainer s Asvis omd copproache, the applicd formalisms are based on the

24

semantics Of the weakest precondition predica ¢ transfaimerwp Some differences in applying wp
and sp are that wp is a backward jole for proprem semantics and assuies atotal correctness model
of execution. llowc.vew,thetotalconn, « 1111 .. nterpretetion hasno forwardrule (i.e.no strongest
total postcondition stp [7]). By using & partin cor rec t ess model of execution, both a forward
rule (sp) and backward 1 ule (wl) car be vees taverify and refine formal specifications generated
by program understanding and reverse cupiecering tasks, Themaindifference between the two
approaches is the ability to directly apply tho strongest postcondition p redicate transformer to
code to construct formalspecificationsyve sussingtheweakestprecondition predicate transformer

as a guideline for co ustructing foripal spccificarions.

7 Conclusions and Future Investigations

Formal methods provide many benefits in the development of software. Automating the process of
abstracting formal specifications fiomprogran code is sought but, unfortunately, not completely
realizable as of yet.However, by providing the vools that supportthcieverse engineering of software,
much can belearned about the functionality ot asystem.

Currently we arc developing asystemto support 21l of the techniques described in this paper
called AuroSrrc. in addition, we have been pplying our techniques to a ground-based mission
control system for controlling unmauned: pace taft at the NASA Jet Propulsion Laboratory. Our
future investigations include thedevelopimentof anapproachtointiodocing abstraction into the

specifications built using our reverse engin eoring, technique.

References

[1] WilinaM.Osborne and Elliot J. Chikofsk,. Fitting picces to the maintenance puezle. IEEE
Software, 7(1):11- 12, January 1990,

(2] Jeannctte M. Wing. A Specifier’s Intiodgucton to Yormal Methods. 1EEE Computer, 23(9):8-
24, September 1990.

{3] B. H. C. Cheng. Applying fomal nethocs in avtomated software engineering. Journal of
Computer and Software Engiveeraig, 2(2) 37- 164, 1994.

Y ¥ e

(4] Gerald C. Gannod and Betty 11.C°. Cheng, Jacilitating the Maintenance of Safety-Critical Sys-
tems Using Formal Method:. Zhe iaternotional Journal of Software Engineering and Knowl-
edge Fnginecering, 4(2), 1994.

(5] K. Lanoand 11", Brever. Vrom 'rogranis to 7 Specifications. InJohn kS, Nicholls, editor, z
User Workshop, pages 4G- 70, Spring o0 Vodlag, 1 089,

[6] M. Ward, F.W.Calliss,and M.Minio. JVhe Maintainer’s Assistant. In Proceedings for the
Confercnce on Software Mainic nan oo 11201, 1989,

[7] Edsger W. Dijkstra and Carel & Scholten. Predicate Caleulus and program Semnantics.
Spriuger-Verlag, 1990.

(8] C. A.R. Hoare. An axiomatic basis {o1 cotputer programming. Communications of the ACM,
12(10):576- 580, October 1968,

(9] Betty H.C. Cheng and Gerald ¢ Gannold. Abstraction of Formal Specifications from Pro-
gram Code. In Proceedings for the JUVE $5d International Conference on Tools for Artificial
Intelligence, pages 125- 128, 1111, 1941,

[10) Gerald C. Gannod and Betty H.C. Cheng Strongest Postecondition as the Formal Basis for Re-
verse Engineering. In Proceedings for the Second Working Conference on Reverse Enginecring,
pages 188- 197. IKEE, 1995.

(11] Gerald C. Gannod and Betty H.C. Cheng . Strongest Postcondition as the Formal Basis for
Reverse Engineering. (To appear 1:) Jownel of Automated Sofiware Fngineering, 1996.

[12) Bric Byrne. A Conceptval Foundation for Software Re-engineering. In Proceedings for the
Confecrence on Software Maintenonc: | pspes 226 235, 11KEE, 1992,

[13) Eric J. Byine and David A. Gustafson. A noftware Re-engineering, Process Model. In COMP-
SAC. ACM,1992.

[14] E. Yourdon and 1. Constantine. Strustired Analysis and Design: Fundamentals Discipline of
Computer Programs and System Degigie. Yourdon V'ress, 1978,

[15] Edsgar W. Dijkstra. A Discipline of Progiamming. Prentice Hall, 1976

[16] Brian W. Kernighan and Dennis M. Ritchic. The € Progrenmaing Longuage. Prentice Hall,
Snglewood Cliffs, New Jersey, 1085,

{17] Phillip Newcomb. Reengincering, Prac edutal Into Data Flow Propramns. In Proceedings for the
Second Working Conference on Heverso Fuginecring, pages 32 38. 112115, 1995,

[18] L.P. Haughton and K. Lano. Objects Revisited. In Proceedings for the Conference on Software
Maintenance, pages 152-161. 1111 1901,

e v e

